EgmatQuantExpert wrote:
In how many ways can a 4-letter word be formed from the letters ABCDEFIO such that the word contains 2 vowels and 2 consonants? The letters cannot be repeated, and, the words can have no dictionary meaning.
A) 36
B) 144
C) 288
D) 864
E) 1728
\(?\,\,:\,\,\# \,\,4\,\,{\rm{distinct}}\,\,{\rm{letters}}\,\,\,\left\{ \matrix{
\,2\,\,{\rm{vowels}} \hfill \cr
\,2\,\,{\rm{consonants}} \hfill \cr} \right.\)
\(?\,\,\, = \,\,\,\underbrace {C\left( {4,2} \right)}_{{\rm{for}}\,\,{\rm{vowels}}} \cdot \underbrace {C\left( {4,2} \right)}_{{\rm{for}}\,\,{\rm{consonants}}} \cdot \underbrace {\,\,{P_4}\,\,}_{{\rm{chosen}}\,4\,,\,\,{\rm{permutations}}}\,\,\, = \,\,\,{{4 \cdot 3} \over 2} \cdot {{4 \cdot 3} \over 2} \cdot 4!\,\,\, = \,\,\,6 \cdot 6 \cdot 24\,\,\, = \,\,\,864\)
We follow the notations and rationale taught in the
GMATH method.
Regards,
Fabio.
_________________
Fabio Skilnik ::
GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here:
https://gmath.net